
ABSTRACT

Memristors are passive two-terminal devices which behave similar to variable
resistors. The memristance of a memristor depends on the amount of charge flowing
through it and when current stops flowing through it, it remembers the state. Thus,
memristors are extremely suited for implementation of memory units. Memristors
find great application in neuromorphic circuits as it is possible to couple memory and
processing, compared to traditional Von-Neumann digital architectures where
memory and processing are separate. Neural networks have a layered structure where
information passes from one layer to another and each of these layers have the
possibility of a high degree of parallelism. CMOS-Memristor based neural network
accelerators provide a method of speeding up neural networks by making use of this
parallelism and analog computation.
In this project we have conducted an initial investigation into the current state of the
art implementation of memristor based programming circuits. Various memristor
programming circuits and basic neuromorphic circuits have been simulated.
The next phase of our project revolved around designing basic building blocks which
can be used to design neural networks. A memristor bridge based synaptic weighting
block, a operational transconductor based summing block were initially designed. We
then designed activation function blocks which are used to introduce controlled
non-linearity. Blocks for a basic rectified linear unit and a novel implementation for
tan-hyperbolic function have been proposed. An artificial neural network has been
designed using these blocks to validate and test their performance.
We have also used these fundamental blocks to design basic layers of Convolutional
Neural Networks. Convolutional Neural Networks are heavily used in image
processing applications. The core convolutional block has been designed and it has
been used as an image processing kernel to test its performance.
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1. Introduction to Memristors and Neuromorphic Computing
1.1. Memristor
Memristor is the theorised ‘missing’ circuit element that completes the clique of
conventional passive elements, namely Resistor (R), Inductor (L) and Capacitor (C).
It was first envisioned and theorised by circuit theorist Leon Chua in 1971[1].
Interestingly, in 2008, a team at HP Labs proposed a method in journal ‘Nature’ [2],
which involved the usage of Titanium Oxide in realisation of characteristics that were
proposed by Chua around 30 years earlier, leading to an upheaval in scientific
communities worldwide. This new circuit element paves the possibility of multiple
avenues in domains such as neuromorphic computing, reconfigurable RF antenna,
Non-volatile memory and Signal Processing.
Neuromorphic computational systems are systems which mimic natural neural
structures and processes using very large scale integrated analog circuits.
Neuromorphic computing encapsulates not only analog circuits but digital,
mixed-signal VLSI systems as well as software models inspired by the biological
process such as neural networks and deep neural networks. The main allure of
neuromorphic circuits in the current world is that traditional computational structures
suffer from an increasing gap between the computational speed and the memory
bandwidth which slows them down, as well as high power requirements to run these
networks. Analog neuromorphic circuits offer lower power requirements, and
memristor based technology provides a way to have coupled memory and processing.

1.2.  Characteristics of Memristor Models
The mathematical modelling of a unit such as a memristors is based on the four
quadratic analysis of relationships between various static parameters, given in the
figure below:

Fig 1: Mathematical Relationship between various state variables

As, one can observe there are broadly four static variables, to be considered. Two of
them are independent variables while the other two are dependent on other with the
help of derivative/integration mathematical operation. As, all processes in nature are
usually symmetric or congruent, a logical extrapolation can be made about the
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missing bridge between charge and flux. The linking element is called as
memristance, which is given as,
                                                      𝑀 =  𝑑ϕ/𝑑𝑞                                                    − (1)
This can be further extrapolated, as current and voltage are easier to correlate in
electronic circuits, as:
                                                        𝑣 =  𝑀(𝑤)𝑖                                                    − (2)

or                                                 𝑑𝑤/𝑑𝑡 =  𝑖 𝑤 =  𝑞                                           − (3)
Thus, memristance clearly depends on the amount of charge passed through it till the
observation point.

Fig 2: Memristor V-I relationship graph

1.3. Mathematical Models of Memristors
1.3.1. HP Memristor

Fig 3: Coupled Variable Resistor Model
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This is the memristor model proposed by HP[2*], it is based on Titanium dioxide
cross points.
The equations controlling the value of memristance is given by the following
equations:
                              𝑣(𝑡) =  (𝑅

𝑂𝑁
(𝑤(𝑡)/𝐷) +  𝑅

𝑂𝐹𝐹
(1 −  𝑤(𝑡)/𝐷))𝑖(𝑡)                   − (4)

and where,
𝑑𝑤(𝑡)/𝑑𝑡 = 𝑢

𝑣
(𝑅

𝑂𝑁
/𝐷)𝑖(𝑡)                              − (5)

The state variable w(t) denotes the width of doped region and the rate of change of the
width of the undoped region depends on the current passing through. The value of the

, thus as more current passes through the memristance the value of the𝑅
𝑂𝑁

<< 𝑅
𝑂𝐹𝐹

resistance offered at a time say t, decreases.

1.3.2. Memristor Models
A detailed analysis of these models are given below[3]:
1. Linear Ion Drift Model
In [2],HP developed a memristor in 2008 which exhibited a pinched hysteresis curve
between current and voltage. They fabricated a titanium oxide based memristor in
which an oxygen deficient layer existed. The memristance depended on the width of
the oxygen deficient layer which was the state variable. [2] also performed basic
modelling of the device characteristics. The basic equations proposed by Strukov et
al. characterised the device based on linear ion drift where the vacancies could travel
across the device, however this model is not practical as in reality as the vacancies
move towards the boundary of the device they exhibit nonlinear characteristics. The
original HP model assumes that the vacancies can drift across the complete device
which would result in it becoming completely doped or undoped, which it does not.

2. Nonlinear Ion Drift Model
The non-linear ion drift model [4] takes on the some limitations in the memristor
model on the account of the electrodynamics. Moreover, studies have shown the
characteristics are non-linear and linear ion drift model aren’t accurate enough. This
model has a nonlinear relation between the state derivative and the applied voltage.
This model follows asymmetric switching behavior, where during the ON state it
follows the tunneling part (sinh part), while during the OFF state it follows the PN
junction characteristics (exponential part).

3. Simons Tunnel Barrier Model
This model treats memristor as a resistor in series with an electron tunnel barrier. This
model assumes non-linear and asymmetric switching behavior due to an exponential
dependence of movement of the ionized dopants. This model suffers from some
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implicit limitations such as complexity, relationship between voltage and current is
implicit and it isn’t a generic model.

4.Threshold Adaptive Memristor Model
This model [5] is made to cater to the needs of creating a model that emulates the
above model with limited error but offers simplification and computational efficiency.
The model follows that there is no change in the state variable below a threshold and
that there is a polynomial dependence between the memristor current and internal
derivative of the state variable. TEAM supports two current-voltage models, a model
which provides linear relation between memristance and the state variable and a
model which allows it to fit the tunnel barrier model, where the meristance is
exponentially related to the state variable.
TEAM is an effective model because as shown in [5], it in improves the simulation
runtime by 47% and has a deviation of only 0.2% from other models.

Table 1 : Mathematical Relationships for memristor models (derived from [3])

A brief comparison of the various models existing in literature is shown in the
following figure:

Table 2: Comparison of different memristor models (derived from [3])

1.3.3. Window Functions
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The state variable used in memristors usually have a certain range of operation.
Window functions are used to add non-linearities at the boundary regions of operation
so that the state variable is confined to its operating range. For example, in the linear
ion drift model, the state variable can vary between (0,D). Without a window function
f(w), the state variable can possibly go out of bounds, which would imply a
completely doped or undoped semiconductor.
Properties of a window functions:

1. Boundary conditions – whether the boundary conditions at the top or the bottom
electrode of device are taken into considerations or not.

2. Boundary lock – whether a window function is able account for boundary lock
problem.

3. Linearity of drift – whether the drift at boundaries non-linear or not.

4. Linkage between linear and non-linear model – whether at low voltages
non-linear model performs same as linear model both with same window functions.

5. Scalability – whether it provides full scalability or not

6. Flexibility – whether it provides control parameters for fine tuning several
properties.

A brief compendium of the window functions offered is shown in the following table:

Table 3: Window functions

1.3.4. Neuromorphic Computer Architecture using Memristor
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Neuromorphic computational systems are systems which mimic natural neural
structures and processes using very large scale integrated analog circuits. Different
modelling of the variable features of neuron has been proposed and developed using
memristor by researchers. The main advantage that the memristor caters is its ability
to feature a non-volatile memory with easy of programmability. Moreover, floating
point values are also possible to achieve, offering an edge over the conventional
von-Neumann architecture [6]. Due to the ease of programmability of the memristor
multiple modelling have been proposed in literature modelling dendrites, Neural nets,
synaptic weighting, STDP etc.
A hardware implementation allows for faster and more energy efficient
implementations of artificial neural networks. [7] surveys various FPGA based
implementations of neural networks. Although these implementations outperform
their software counterparts a major issue faced by them is that the synaptic weights
are fixed during program time and any modification made requires reprogramming of
the FPGA.
Memristors offer a highly integrable solution to this problem. Memristors couple both
processing and memory at one location. Memristors can also be programmed
independently and don’t face the drawbacks a FPGA implementation would.
[8] proposes an implementation of a simple ANN which solves linearly and
nonlinearly separable Threshold Logic Unit problems using memristors as synaptic
weights in the neural network.
1.3.4.1. Neural Network Fundamentals
Artificial Neural Networks are loosely inspired by the actual processes taking place in
the nervous system. The basic element of the network is known as a ‘neuron’ or a
node. It is the centre where processing of information takes place. Synapses interlink
one neuron to another and have a weight associated with them. There is a non-linear
activation function at each node with both limits the output range as well as
introduces non linearity. An important aspect of Neural Networks is their layered
structure where the output of one layer serves as the input of another layer. A single
layer neural network is known as the Perceptron. Adaline has the structure of a
perceptron and is followed by a hard-limiting activation function.

A good way of thing about Neural Networks is a “Composite function” which takes
some inputs and gives and output depending on various parameters. These parameters
can be updated or ‘trained’ for a specific application.

Neural networks are made up of:
- Neurons
- Weights/Parameters
- Biases
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Neurons are the building blocks of a NN, it consists of biases and weights and
performs some computation on the input to give an output. Further, Neuron uses
activation functions to limit their outputs within a range.

Fig. 4 : Equation of a simple neuron with variable weights and biases
{Source: https://tinyurl.com/ya7a4bz5}

Weights refer to interconnection weights between neurons and biases refers to
additional unit that is added to a neuron's output.
A neural network can be trained by using three methods: Supervised learning,
Supervised learning using critics and unsupervised learning. Supervised learning
includes Back-propagation and RTRL and usually gradient descent is used to
minimize the error function. Unsupervised learning follows Hebbian rule. Gradient
descent is further fo 2 types: Changing the epoch and Continuous weight change.

Further there can be 2 types of neurons: Stochastic and deterministic. Deterministic
neutron can be of single order or even of multiple order. Neurons can be further used
in 2 topologies: Unconstrained sparse and Fully connected symmetric. Activation
function in synapse can be of two types: Discrete and Continuous. Continuous
activation function can further be of 3 types: pulse frequency neuron, Distributed
neuron and hyperbolic tangent neuron.

Neural networks used for neuromorphic applications are of two types:

Spiking Neural networks like Spike Timing Delay Plasticity(STDP)

1. Here, Synapse plasticity depends on latency between spikes from previous and
current neuron.

2. Weight of synapse increase when lag between two neurons decreases and vice
versa

https://tinyurl.com/ya7a4bz5
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3. Like, Hebbian learning network which strengthens the connection between
neutron whose activities are causally related.

4. STDP exploits the threshold effects observed in switching characteristics of
several types of memristors

5. It’s more closer to the actual working of brain

Artificial neural networks like feedforward, back propagation etc.

1. Here, Synapse plasticity depends on the weights assigned to synapse network.
2. Since, learning in ANN is iterative, it can adjust for mismatch in memristive

synaptic elements.

1.3.4.2. Deep Neural Network Fundamentals
Supervised machine learning involves the use of a labelled set of training data to train
a model which can than be used to make predictions about new data. Traditional
algorithms include linear classification where the training data is used to find the
coefficients of a set of linear equations which can then be used to make predictions. A
simple example would be a linear classifier which classifies a small image as shown
below.

Fig 5 : Linear Classification Example {Source: CS231n Stanford 2017}

The weight matrix ‘W’ and bias matrix ‘b’ is found using the training set with
algorithms which specify a loss associated with the current model. Algorithms such as
gradient descent can be used to determine the optimal values of these coefficients.
Neural networks are loosely inspired by the biological neuron, however in simple
terms they are just linear classifiers followed by a nonlinear function which are then
cascaded with each other.
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Fig 6 : Biological neuron analogy {Source: CS231n Stanford 2017}

Deep neural networks have multiple layers performing an information processing task
with a number of parameters to be adjusted in each layer. A deep network layer
typically consists of certain mathematical operations such as convolution, rectification
linear unit (ReLU) operations, down sampling operations, concatenations,
elementwise additions, batch normalization and fully connected matrix
multiplications.
Convolutional neural networks are critical in modern day image processing tasks. If a
neuron was attached to each pixel of an image it would take a prohibitive amount of
processing time due to large sizes of images. Instead of this in convolutional neural
networks a filter with weights to be trained is convolved spatially with the image to
produce an output which can then serve as the input to the next layer. The concept of
layers is what makes deep networks so attractive. It allows for different layer
combinations which produce drastically different outputs.

Fig 7 :  NN vs CNN {Source: CS231n Stanford 2017}

1.3.4.3. Network Learning Algorithms
Network training algorithms are the algorithms which determine the synaptic weights
that need to be set. These algorithms determine these weights based on the problem to
be solved and the structure of the artificial neural network being employed for the
problem. Back propagation is one of the most popular training algorithms used. It is
used together with gradient descent to determine the optimum weights. The error
between the target response and the current response of the network is calculated and



15

this error is propagated backwards through the entire network to set the weights. This
algorithm requires a large amount of computational effort; however, it is suitable for
almost every kind of network and is thus widely used.
[9] Proposes the Madaline Rule – II which is used to train multi-layer ADALINE
networks which contain hard limiting functions (signum function) which is
non-differentiable. The MR-II rule uses the principle of minimum disturbance to train
the network. When an input is fed into the network and it responds correctly to the
training values, no weight adaptation is done, otherwise, it randomly changes the
weights at the input of the node that has the least confidence in its output. After the
weights are changed, the network is tested to see if the change reduced the
classification error rate. If this is the case, the change is kept, otherwise, the weight is
reset to the original, then another set of weights is changed. This is done according to
the figure shown below. The weight change will be increased by a factor known as the
growth factor if the network doesn’t converge after a set number of iterations.

Fig.8 : MR-II Rule
1.4. Literature Review
1.4.1. Memristor and Theoretical Modelling
Leon Chua proposed in 1971 the fourth missing element [1] and the same was
implemented by HP in 2008 [2]. Multiple models have been forth over the years
focusing on obtaining different memristive characteristics like pinched hysteresis
loop. Linear Ion Drift Model [2] was initially modelled by HP. Later, other different
models like “Non-Linear Ion Drift Memristor Model” [4], “Simmon Tunnel Barrier
Model” [10] and “Team Model” [5] were presented.
Each of these models has its own plus and minus. In Linear model, nonlinearity
is less and assumes two conditions that are (i) uniform electric field and (ii) the
average mobility of ions [11]. Further it predicts an inverse relationship between
switching time(To) and applied voltage(Vo), stimuli is voltage here. However, actual
experiments shows a logarithmic inverse relationship.

Predicted Relationship: 𝑉
0
 α 1/𝑇

𝑜 
                        − (6)

Actual Relationship: 𝑉
0
 α 1/𝑇

𝑜 
                            − (7)
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To mitigate this problem, nonlinear memristor models were proposed. Further,
window functions such as “Jogelker” [12], “Biolek” [13], and “Prodromakis” [14]
play a vital role in linear model as well as non-linear model. It is used to block the
state variable from getting out of the bounds [0,D] and also to add more non-linearity
near the bounds. The derivative of this state variable is multiplied by a window
junction in order to reduce it to 0 when the state variable is at the bounds.

1.4.2. Memristor for biological neuron
Memristors are mostly strong candidates for physical realization of a synapse.
However, it can also be used to model biologically inspired neuron. Transient current
response of memristor is exploited for the same. [15] shows that memristor gives a
spike-like current response for step input and it can be used in voltage-excited
neuromorphic systems. It can further be demonstrated that the change in the spike’s
width depends upon change in initial resistance. [16] then compared several
characteristics of memristors transient response with biological systems. On-Off
switching ratio between biological system is shown to be 20 times more than that of a
memristive device. Further, the concept of using logarithmic amplifiers is introduced
to reduce the above discrepancy. Pickett’s model of memristor was used to model
switching characteristics of a memristor. [17] demonstrates the use of MMOST -
Memristor MOS technology for positional detector. Further, an extensive study of
symmetric and asymmetric STDP was carried out and Inhibition of Return(IOR)
neuromorphic algorithm was proposed. Another algorithm, kth order Winner-Take-All
was proposed. [18] introduced the concept of Long-term depression , Long-term
potentiation and habituation for the ways in which memory is stored or made in all
living beings. Further, Presence of LTP within memristor was demonstrated. Chua
further draw resemblance between Hodgkin-Huxley’s sodium potassium channel
model and corresponding memristor model. Anomalies in original Hodgkin-Huxley
model were solved by using memristor. [19] proposed memristive models for higher
order STDP and SRDP learning algorithms. Four different types of STDP’s were
shown and TSTDP(Triple STDP) was implemented with memristive synapse.
Depression and Potentiation rates were introduced in memristive based post synaptic
spikes. [20] proposed a memristor based neuron for SRDP. Switching rate of neuron
was altered to change synapse’s sensitivity.

1.4.3. VLSI Implementation of Analog Neural Networks
Multiple implementation of the CNN and Artificial Neural Network has been
proposed in the past based on CMOS[21]-[23]. However, a large amount of circuit is
required for implementation of it on the chip. As this goal is extremely daunting not
many full architectures have been proposed in the past. For the synaptic weighing and
analog multiplication, CMOS based multipliers have been commonly used in the past.
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But, programmable multipliers with weights have not been proposed, much in the
past. Also, nonlinearity in synaptic multiplications between input and weight is also a
problem of the conventional circuit.

[24, [25] and [26] presented different multiplier circuits. [24] presented a approach
limited to spiking neural network, while [25] presented memristor based
self-organized network with the possibility of negative weights, Kim et al. [26]
presented a generic neural network multiplier implementation.

[27] aimed at developing a full-scale single board neural network. This basically
means that the stimulus generating analog circuit and sensing circuit is on the same
chip. Moreover, dual modes exists for the neural network node, namely: 1. Dynamic
Mode: For training purposes. 2. Permanent Mode: Retaining the charged weights.
This paper gives an in detail description of the interior circuitry of the neural network.
Moreover, the results of the resultant circuit for 2-XOR-6 and two-spiral problems
have also been enlisted. [28] develops from ground the logic of the most basic type of
an artificial neural network hardware implementation. It starts with the details about
CMOS circuit and extends it to multiplier circuits which leads to the pathway for a
basic neural network analog circuit. This can prove to be a good starting point to
develop a VLSI implementation of the Neural Networks. [29] can also be used as a
starting point for learning CMOS VLSI chip implementation of neural networks. The
researchers in this paper developed a chip containing 3K Transistors arranged into a
matrix of 8x4 synapses fully connected to 4 neurons. It was proposed that this
rudimentary model, is then used to develop more sophisticated structures. Error
analysis due to the analog anomilities is also presented at the end of the paper in brief.
[30] discusses about Hopfield ADC which is based on the feed forward neural
network and compares it with the Flash ADC and the SAR ADC on the basis of the
propagation delay. Moreover, it compares with another neural network, named as the
asymmetrical neural network which is an advancement to the Hopfield ADC in terms
of elimination of the spurious energy level condensation problem. [31] proposes a
VLSI neural network in which the learning process requires minimal additional
hardware i.e. clock, inputs and a target value. The readjustment of the weights during
the learning phase is done using approximation method such as Medeline Rule III and
summed weight neuron perturbation. Resultant arrangement was tested on a small 64

synapse, 8 electron model on of chip testing with the 4-parity problem. A 4900𝑢𝑚2 
number of varied points related to electronic implementation of neural networks were
proposed. In analogy with the human brain , an analog implementation of neural
networks will be pursued using simple, small, possibly non-ideal building blocks;
neurons and synapses. [32] presents an analog neural network as an application for
the Support Vector Machine learning based on a partially dual formulation of the
quadratic programming problem.
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1.4.4. Memristor Programming
[33] proposes an antisymmetric series memristor combination in which the weights
can be programmed linearly. [34] builds upon this architecture using them to create
memristor bridge synapses which use a combination of the above antisymmetric
series memristor combinations to create weights which are stable at zero. They
maintain the linear programming property and also allow for easy interconnection of
weights. This in contrast to the traditional memristor programming models as in [35]
where a memristors in a crossbar are programmed to a desired weight. The weights in
this case are non-zero and it does not follow the linear programming regime.
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2. An Investigation into State of the Art Memristor Circuits

2.1. Memristor Programming circuit
A memristor can be programmed to a fixed value precisely by giving a specific
number of voltage pulses. One such implementation of the above logic is shown
below:

Fig. 9a : Memristor programming circuit

For this demonstration, we have used a Non-Linear memristor model with the
JinXiang window function. Transient analysis of the above circuit is shown below,
where the memristance is changed from one extreme i.e. Roff to another extreme i.e.
Ron. The disadvantage with the given configuration was that the programming of the
memristors was non-linear.

Fig 9b : Memristance curve while programming
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2.2. CMOS Memristor Dendrite Threshold Circuit
[37] designs dendritic circuits of spike and saturation types. Dendrites form the
interface between synapses in a biological neuron. These circuits can be used to build
XOR circuits as well as intensity detection circuits which are formed by a
combination of these basic dendrites. Circuits build in [37] use memristors, CMOS
gates and zener diodes.

(a) Dendrite Spike Type Cell (b) Dendrite Saturation Type Cell
Fig 10 : Dendrite simulation

The outputs of the circuit were observed as:

(a)

(b)
Fig 11: Different Dendrite Models (a) Step (b) Threshold dendrite

Spike and saturation dendrites and a XOR circuit built using them was simulated. As
our main objective was to design a kernel based subsystem, the edge detection method
using dendrite based multiple threshold circuit was explored in depth.
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Fig 12: Multiple Threshold circuit
The not gate using the CMOS logic used are variable threshold type not gates. A not
gate and the memristor-zener in the above configuration forms the inverse dendritic
logic. The practical response is that it offers image segmentation and can be used in
applications such as edge detection. By tuning the threshold of the above circuit
different colour regions can be processed. This circuit is useful for edge detection and
image segmentation where pixels are classified into groups.
The input image pixel vector was used as the basis for creating variable voltage inputs
which were fed to the above circuitry. The inverse logic of the above was used to
create the output images. Some of the sample outputs we simulated are shown in the
following figures.

Fig 13: Output of Simulations

The approach thus, developed offered us a great insight on a basic neuromorphic
circuit for the application of edge detection in images. This circuitry doesn’t directly
offer us any advantage in the kernel making. But, certain amolerations can be made to
it, providing a great lead:
Use of different zener to control the saturation level. However, a reverse control
voltage can also be used for controlling the breakdown of the zener and increase the
domain of the proposed.
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2.3. Memristor Bridge Circuit for Neural Synaptic Weighting

Fig 14: Memristor Bridge Circuit
The above memristor bridge circuit [38] was the basis of the proposed research
approach. The basic voltage equations are given below:
                                                    𝑉

𝐴 
=  𝑀

2
𝑣

𝑖𝑛
/(𝑀

1
+ 𝑀

2
)                                     − (8)

                                                   𝑉
𝐵 

=  𝑀
3
𝑣

𝑖𝑛
/(𝑀

3
+ 𝑀

4
)                                      − (9)

                     𝑉
𝑂𝑈𝑇

= 𝑉
𝐴

− 𝑉
𝐵

= (𝑀
2
/(𝑀

1
+ 𝑀

2
) −  𝑀

3
/(𝑀

3
+ 𝑀

4
))𝑣

𝑖𝑛
= φ𝑣

𝑖𝑛
  − (10)

− (11)
Interestingly, the equivalent constant is linear in nature, thus offering linearϕ
synaptic control.
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Fig 15a: Proposed Synaptic Weighting System

Fig 15b: Programming memristance on a bridge network
The programming mechanism of this circuit is based on input-time logic. For smaller
time periods the resultant shift in memristance is small, while on the other hand the
movement in memristance for larger change in input signal voltage is large.
Following, the logic above we designed a neural synaptic weighting circuit using
opamp which is given below:
The circuit utilizes voltage summing and resultant voltage differencing over the
following stage. This circuit offers a basis for programming the synaptic weights to
get a programmable feed forward stage of NN.
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The output of this circuit over the programming and weighting stage is shown in the
following figure.

Fig 16: Synaptic weights at the time of calculating the outputs

The reference bias values are summarized in the following table.

Table 4: Pulse Programming timing for the synaptic weights

Synaptic
Weight

Time Period for Programming(s)

1 0.639

2 0.319

3 0.159

The programming is done on this circuit using a PWL file written in python. These
are taken as inputs, as a text file.
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2.4.Implementation of linearly separable TLUs:

Linearly separable TLUs (Threshold Logic Units) require only a single line to
separate their regions. They can easily be implemented using a single neuron with two
inputs and a bias term. There is a large number of possible weight combinations
which satisfy the relation of a given TLU. To implement negative synaptic weights
the following circuit has been proposed.

Fig.17. Negative synaptic weight Fig.18. Fixed Resistor Model

The overall structure of the proposed single node Adaline circuit is shown below:

Fig.19. Single Node Structure

The equations used to map the weights determined to the given structure are shown
below:

  𝑅
𝑁

= 𝑅
𝑀

𝐻𝐼𝐺𝐻

− (𝑅
𝑀

𝐻𝐼𝐺𝐻

𝐺
𝐻𝐼𝐺𝐻 

)( 𝑅
𝑀

𝐻𝐼𝐺𝐻 

−  𝑅
𝑀

𝐿𝑂𝑊

)/(𝑅
𝑀

𝐻𝐼𝐺𝐻

𝐺
𝐻𝐼𝐺𝐻 

−  𝑅
𝑀

𝐿𝑂𝑊       

− (12)
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𝐹
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𝑀

𝐻𝐼𝐺𝐻

𝐺
𝐻𝐼𝐺𝐻 
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𝑀

𝐿𝑂𝑊

𝐻
𝐿𝑂𝑊
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𝑀

𝐻𝐼𝐺𝐻

− 𝑅
𝑀

𝐿𝑂𝑊

)    − (13)

where, 𝑅
𝑀

𝐻𝐼𝐺𝐻

= 𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝑀𝑒𝑚𝑟𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑉𝑎𝑙𝑢𝑒

𝑅
𝑀

𝐿𝑂𝑊

= 𝐿𝑜𝑤𝑒𝑠𝑡 𝑀𝑒𝑚𝑟𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑉𝑎𝑙𝑢𝑒

𝐺
𝐻𝐼𝐺𝐻

,  𝐺
𝐿𝑂𝑊

= 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑛𝑑 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑢𝑛𝑑

The resistance values obtained using these equations are as follows:

Table 5 : Resistance values

The single layer Adaline circuit was then simulated in LTSPICE:

Fig 20. Single Neuron Adaline Structure
The Memristance values for binary inputs (R1 , R2) and the bias Memristance (R0)
values are shown in the table, which have been found using MR-II and scaled to
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resistance values. The Memristance can be changed to program the circuit to perform
different operations. The op-amps have a virtual ground reference of 2.5V and the
input logic level is 0.1V above and below this level. The results for an AND and OR
gates are shown below.

Fig.21a. OR Gate Output

Fig.21b. AND Gate Output
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3. Artificial Neural Network Building Blocks
3.1.Weight Block:
The weight block consists of a memristor bridge circuit connected to a differential
pair. The bridge can be decomposed into a parallel combination of two series
memristor circuits which contain two memristors in an anti-symmetric configuration.
The series anti-symmetric configuration [33] has the property of constant resistance
and the memristor bridge can easily be programmed through the input pin.

Fig 22. Weight Block Circuit Implementation

Fig 23. Weight Block Interface
The two output terminals I+ and I- feed to a summing block where the currents are
subtracted. The weight block has a programmable weight ranging from -0.98 to 0.98
and can be easily programmed to have a zero weight by balancing the bridge.
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3.2. Summing Block:
The summing block is responsible for summing the I+ and I- currents from the weight
blocks and then subtracting their total sum. The summing block has been
implemented using an OTA style circuit as shown below:

Fig 24. Summing Circuit Implementation

Fig 25. Summing Block Interface
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3.3. Activation Function
3.3.1 Introduction
AFs decides whether the neuron fires or not for the computed weighing function and
the equivalent biases. The parameter of the output data are produced in a manner such
that, by incorporating some gradient algorithm such as the gradient descent algorithm.
The AFs can be of different forms zero centered, linear or nonlinear. Depending on
the application they are to be used, they are selected and used to control the outputs of
out neural networks. These are used across different domains from speech
recognition, object recognition and classification, scene understanding and
description, cancer detection systems, fingerprint detection, weather forecast,
self-driving cars, and multiple different domains. By categorizing the application of
the activation function impact in various domains, recurrent analysis problem is
reduced.

The output layer is preceded by multiple hidden layers which are processed by
multiple linear weighted function to generate the final output. The input vectors a
transformation is given by

                                                         𝑓 𝑎( ) = 𝑤𝑇𝑎 + 𝑏                                              − (14)

where a = input, w = weights, and b = biases.

The neural networks produced from the Eq.(14) are further processed by not a single
weighted input but by the matrix extrapolation of the weight vector with the input.
Output of these models are given by from Eq. (15)

                                𝑦 =  (𝑤1.  𝑎1 +  𝑤2 . 𝑎2 +  ..  +  𝑤𝑛 . 𝑎𝑛 +  𝑏)                       − (15) 

In order to prevent the problem of overfitting, special non-linear activation function
are required to be applied to the input. These activation function are also called as
transfer function and are utilized to modulate the input data. The final result after the
application of the nonlinearity with the activation function is given by the equation:

𝑦 =  α(𝑤1. 𝑥1 +  𝑤2. 𝑥2 +  ..  +  𝑤𝑛. 𝑥𝑛 +  𝑏)                           − (16)

Where α is the activation function.
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Figure 26: Neural net Structure with an Activation Function {Source: CS231n
Stanford 2017}

Some noteworthy points are:

1. Location of the AF: For high output characteristics of the neural network, the
AF should be placed at the point where to reduce the highly saturated output to a
dignified scalable range, or to add specific non-linearity to the next stage to improve
prediction.
2. Zero Mean of data, using AF: The zero mean property of the activation
functions like tanh and sigmoid enable the data to be re-centered about origin,
preventing saturation of the output as it passed down to the next stage.
3. Activation Function, effect on the gradient descent: Normally, the linear and
the non-linear architectures work in a tandem in order to deliver to a particular task.
Multiple problem come while designing the neural net such as the vanishing and the
exploding gradient problem, of the derivative of the gradient term. In vanishing
gradient, due to the repetitive multiplication of the gradient term, the net gradient
vanishes to be zero. While on the other hand for gradient much greater than 1, it
explodes towards infinity. The non-linearity due to the activation function limits the
gradient terms in a defined range and prevents from these problems from occurring.
Many early neural network activation function, somewhat biologically inspired were
proposed by Elliott, 1993 as he studied the usage of the Activation functions in neural
network.

3.2. Proposed CMOS based implementation of Activation Function
3.2.1. ReLU – Rectified Linear Unit
The characteristics in the designing part, which are to be aimed are:

                                              𝑓 𝑥( ) =  𝑓 𝑥( ) = {0,   𝑥 < 0 𝑥,   𝑥≥0                           − (17)     

Research on the existing CMOS based circuits which offer similar characteristics was
the point over which the exploration of design revolved. Current mirrors offer a fine
solution to the above stated problem. The operational note on the current mirrors is
discussed as below:
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3.2.2. Operation Characteristics of Current Mirrors

Figure 27: Current Mirror operation (a) NMOS based (b) PMOS based (Source:
Lecture 3, EECS3611 Analog Integrated Circuit Design Course Material, York
University)

The above figure basically depicts two models of the current mirror common in
literature. One is the NMOS i.e. N-type Metal Oxide Semiconductor based current
mirror and the other is the PMOS i.e. N-type Metal Oxide Semiconductor based
current mirror. Both of these show the operational characteristics as:
                                                           𝐼

𝑂𝑈𝑇
= 𝐼

𝐷𝐶
                                           − (18)

Multiple Implementation of the current mirrors are common in literature, some are
summarized as:
1. Simple Current Mirror (offers low output resistance)
2. Cascode Current Mirror
3. Low Voltage model of Cascode Current Mirror (Reduce minimum output
voltage)
4. Wilson Current Mirror (Feedback based operation)

3.2.3. Proposed Circuit for the ReLU Block

Cascode current mirror was chosen for the ReLU implementation because it offers a
high output resistance. The circuit diagram of the cascode current mirror is shown in
the Fig. 28.
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Figure 28: NMOS based Cascode Current Mirror (Source: Source: Lecture 3,
EECS3611 Analog Integrated Circuit Design Course Material, York University)

The equation of the output current in the current mirror in the dc mode of operation is
extremely simple. As, is pushed equal on the both ends, leads to the same output𝑉

𝐺𝑆

current, considering the saturation mode of operation. The equation of whose current
is given by:

                                                         𝑖
𝐷

= 𝑘 𝑉
𝐺𝑆

− 𝑉
𝑡( )2                                       − (19)

and is the threshold voltage.𝑤ℎ𝑒𝑟𝑒 𝑉
𝐷𝑆

> 𝑉
𝑂𝑉

(𝑖. 𝑒.  𝑉
𝐺𝑆

− 𝑉
𝑡
) 𝑉𝑡

Moreover, as and are joined the above condition is automatically satisfied,𝑉
𝐺

𝑉
𝐷

pushing them naturally in the saturation region.

If we consider the Fig. 28(a) part carefully, we can observe that the considering a
singular orientation of the current direction, that the current direction is reversed over
the next stage. Thus, giving the graph of a negative ReLU. In order, to solve this
problem we add a NMOS current buffer after it, pushing the current in the original
configuration. The limiting characteristics of the PMOS and NMOS to the current in
source to drain and drain and source respectively are the underlying principles of the
proposed research.

3.2.3.1. Simulation and Results

The circuit of a RELU based on cascode current mirror is shown in Figure 29.
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Figure 29: ReLU Implementation using Current Mirrors

Table 6: Simulation values for Current Mirror based ReLU

Attribute Value

Start (mA) -1

End (mA) 1

Increment (uA) 10

The simulation results for the Cascode current mirror based configuration are shown
in the following Fig, 30.

Figure 30: Simulation Characteristics of the proposed ReLU Model

3.2.4.Tangent Hyperbolic

Tangent Hyperbolic function, commonly known as tanh(x) is commonly, used for the
implementation of the activation function, because of the zero mean property offered.
This circuit offers an upper hand in the implementation in the hardware domain as the
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problem of the saturation of the outputs, causing an erroneous response is highly
prevalent in the case of the hardware neural network accelerometers. The equation of
the tangent hyperbolic function is given by Eq.(20).

                                                     𝑡𝑎𝑛ℎ 𝑥( ) = 𝑠𝑖𝑛ℎ𝑥/𝑐𝑜𝑠ℎ𝑥 =   𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

-(20)

[39] proposed a circuit, based on weak inversion mode of operation of CMOS, by
applying the translinear principle. However, there exists limited circuits that emulate
this behavior in the saturation mode. The proposed research solves this problem.

3.2.4.1. Pade’s Rational Approximation
The Pade’s rational approximation is based on the factor of the continued fraction for
the representation of the irrational functions, given in Eq.(21).

𝑡𝑎𝑛ℎ𝑥 = 𝑥

1+ 𝑥2

3+ 𝑥2

5+…

-(21)

Considering only the first denominator term of this approximation and approximating

the terms below, we have the following approximation given in Eq.(22).𝑥2

5+ 𝑥2

7+ 𝑥2

. ..

→0

𝑡𝑎𝑛ℎ𝑥 = 3𝑥

𝑥2+3

-(22)

3.2.4.2. Implementation of the Tangent Hyperbolic Approximation based on the
Pade’s Rational Approximation

The implementation revolves around constructing CMOS based logical block’s for
implementing the various mathematical functions like squaring, division and
multiplication. The detailed implementation of each logical block are explained in
detail in the following subsections.
3.2.4.3. Implementation of the Squaring Circuit

The squaring circuit aids in computing the denominator term i.e. . The circuit𝑥2

utilized is adopted from [40]. As the ideal squaring of the when it is in the order of𝑥
uA or mA leads to equivalent results in the order of pA or uA, which are
unsustainable for practical application, a balancing division factor was added that can
aid in the pushing the operation point to uA or mA. The circuit proposed in [40], does
exactly this. The operating equation is given in Eq. (23).

-(23)𝐼
𝑂𝑈𝑇

= 𝑥2

4 ×𝐼
𝑟𝑒𝑓

.𝑤ℎ𝑒𝑟𝑒,  𝐼
𝑟𝑒𝑓

 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑎𝑛𝑑 𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡

The LTSpice circuit diagram for the same is shown in the Fig. 31.
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Figure 31 : Squarer Circuit Block
The value of chosen is 250uA. This readjusts the current amplification factor to𝐼

𝑟𝑒𝑓

1000 for the squarer.

𝐼
𝑂𝑈𝑇

= 1000 ×𝑥2

-(24)

𝑤ℎ𝑒𝑟𝑒,  𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.

However, the operating range of the multiplier is non-linear i.e. for certain value of
input currents, it does not work. On applying DC Sweep on the multiplier for the
values shown in the Table 7, the squaring operation is applicable only after the point
where the input crosses the value of 360uA.

Table 7: Simulation settings for Squarer DC Sweep Analysis

Attribute Value

Start (mA) 0.01

End (mA) 1
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Increment (uA) 10

The characteristic curve for the squarer is shown in the Figure 32.

(a)

(b)
Figure 32: CMOS Squarer Characteristic Curve

3.2.4.4. Implementation of the Divider
The implementation of the current divider is based on the circuit developed in Section
1.2.2.3. However, in the case the considered in the Eq.(23) is considered to be a𝑥
constant. While the is the input . The Eq governs the operation of the working of𝐼

𝑟𝑒𝑓
𝑥

the divider circuit.

-(25)𝐼
𝑂𝑈𝑇

=
𝐼

𝑅𝐸𝐹
2

4×𝑥

where, is the input current and is the reference current.𝑥 𝐼
𝑅𝐸𝐹
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Fig 33 shows the circuit diagram of the current divider adopted from [40].

Figure 33 : Divider Circuit Block

The value adopted in the divider circuit is considering the viability of operation𝐼
𝑅𝑒𝑓

with other building blocks is 500uA. Thus, the resultant reduced equation is given in
the Eq. (26).

𝐼
𝑂𝑈𝑇

= 1.5625×10−8

𝑥 𝐴

-(26)

where, x is the input current.

On the analysis of the divider circuit, we observe that for the values of ,𝑥 > 300𝑢𝐴
the circuit becomes non-operational. However, for values as less as 50uA, it works
adequately. Considering these factors a suitable current adjustment methodology is
required for re-adjusting the input current to the divider, which are discussed in
1.2.2.6.
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The output characteristics of the Divider circuit is shown in the Fig. 34 for the DC
Sweep settings given in Table 8.

Table 8: Simulation settings for Divider DC Sweep Analysis

Attribute Value

Start (mA) 0.01

End (mA) 1

Increment (uA) 10

(a)

(b)
Figure 34: Output Characteristics of Current Divider
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3.2.4.5. Implementation of the Multiplier

The multiplier implementation is based on the squarer circuit given in the Subsection
1.2.2.3. The implementation of the multiplier is based on the Eq. (27).

𝐼
𝑂𝑈𝑇

= 𝐼
1

+ 𝐼
2( )2 − 𝐼

1
− 𝐼

2( )2 = 4𝐼
1
𝐼

2

-(27)

The algorithmic flow of the implementation of the same is shown in the Fig. 35.

Figure 35: Algorithmic flow of Multiplier

Moreover, the following sub-circuits are required for the successful implementation of
the above circuit using the squarer:
1. Current subtractor circuit
2. Interfacing Circuit
3. Current Copier Circuit

Current Subtractor Circuit: The current subtractor unit used is the same that is
utilized in the output stage of the memristor bridge programmable weight circuit.
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Interfacing Circuit: The interfacing circuits are basically stages of NMOS and PMOS
based current mirror for orienting the input current direction to the next operational
stage. Here, majorly from the output of the subtractor to the input of the squarer, and
following this again to the subtractor.

Figure 36: Interfacing blocks

Current Copier Circuit

The NMOS based current copier is utilised for feeding the input to multiple parallel
stage. The implementation of the same is shown in the Fig 37.

Fig 37: Implementation of 3 way Current Mirror Circuit

Implementation of the multi-quadrant multiplication

The multi-quadrant multiplication is implemented by entering the terns and𝐼
1

− 𝐼
2( )

to the squarer circuit. For the case of the negative input due to the biased𝐼
2

− 𝐼
1( )

nature of the NMOS, the other current output will tend to be zero. Thus, covering both
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the case scenarios. The block diagram implementation of the same is shown in the
Fig. 38.

Fig 38: Implementation of the Current Multiplier Circuit

For the multiplier circuit, the equivalent multiplication equation is given in the
Eq.(28).

-(28)𝐼
𝑂𝑈𝑇

= 4000𝐼
1
𝐼

2

3.2.4.6. Interconnection and Calibration of logical blocks

Interconnection of Elements:

The problem of the limited current input range is solved by creating a 1/5 gain current
mirror shown in the following Fig. 39.
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Fig 39: Unbalanced W/L ratio for limiting current

Table 9: W,L values for the current factor reduction

Transistor W,L

M1 180u , 0.18u

M2 32u , 0.18u

The interconnection of the elements is done through the PMOS and NMOS buffer
stage as shown in the Fig. 36.

Calibration of Elements:
Upon implementation of the different logical blocks the interconnection of the
different stages is required. The equivalent expression will contain to multiplication
factors of 4000 because of the elements 3, and the divided element. The division𝑥
element will contain the factor of 1000 for the implementation of the term .𝑥2

Defining the standard units of x:
A unit of 0.1mA is considered as the 1 equivalent scale on the x-axis for tanh(x).

Considering this factor and solving the following equation, we obtain:
and in the equation given in Eq.(29).𝑚 = 120𝑢𝐴 𝑐 = 0. 3𝑢𝐴

𝑓 𝑥( ) = 𝑚𝑥

𝑥2+𝑐

-(29)
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Fig 40: Implementation of the Tangent Hyperbolic

3.2.4.7. Simulation and output characteristics
The simulation of the circuit shown in Fig 41(a) was done. The simulation settings for
the DC Sweep of the current source I1 is given in Table 10.

Table 10: Simulation settings for Tangent Hyperbolic

Attribute Value

Start (mA) 0.01

End (mA) 2

Increment (uA) 10

The output characteristics of the same are shown in the Fig. 41(b).

(a) Circuit Diagram
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(b) Simulation Results
Fig 41: Output characteristics of the Tangent Hyperbolic

3.5.Artificial Neural Network Implementation:
To test the feasibility of the blocks described, we have used them to construct a
2-layer neural network and compared its performance with the software
implementation of the same network. This is a fully connected network with each
node connected to the nodes in the layer before and after it. We have used the
patternnet architecture from the neural network toolbox in MATLAB and modified
the activation function before training the network. The neural network structure is
shown below:

Fig 42: Patternnet Architecture Used {Source:Generated by MatLab}
The network consists of nine inputs which are fed to each of the nodes of the first
hidden layer. The first hidden layer uses a rectified linear unit as the activation
function. The output of the first hidden layer is fed into each of the nodes of the next
layer. The output is then passed through a softmax layer which converts the inputs
into two distinct probabilities which gives an estimate of the confidence of the neural
network in classifying the input as each class. The network was trained using scaled
conjugate gradient backpropagation. We have used 2 nodes in the first hidden layer to
decrease the size of the network.
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3.5.1.Dataset Used:

The neural network used the Breast Cancer Dataset available at the the UCI Machine
Learning Repository [36]. The dataset contains information regarding the biopsies of
tumors stored as 9 features:
1. Marginal Adhesion
2. Bare nuclei
3. Uniformity of cell shape
4. Clump thickness
5. Single epithelial cell size
6. Uniformity of cell size
7. Mitoses
8. Normal nucleoli
9. Bland chromatin

The data is normalised and fed into the neural network to classify the tumour as either
benign or malignant. The data was split into 70% for training the neural network, 15%
for validation and 15% for testing.

3.5.2. LTSPICE Implementation:

Using the blocks we have developed before, the circuit implementation of the neural
network was developed. The weights of each layer from the software implementation
were used to program the memristors in each of the weight blocks in the circuit. The
complete circuit is shown below:



49

Fig. 43: Complete ANN Architecture SPICE implementation

3.5.2.1. Input Layer:
The input layer consists of a nine input signals which represent the nine parameters
obtained after doing a biopsy on a tumour. The nine parameters have been normalised
and zero-centred before being converted into a voltage signal.

Fig 44: Input Layer to the ANN

3.5.2.2: Node Implementation:
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Fig 45. ANN Node Implementation

The neural network node is constructed using  weight blocks, a sum block and an
activation block. The weight block consists of a memristor bridge circuit which
multiplies the input signal with the programmed weight in the memristor. The 9 input
voltages require 9 weight blocks and the result of the multiplication of the signal and
weights are accumulated using the sum block. The activation block present in the
above node uses the ReLU (Rectified Linear Unit) activation function to introduce
non-linearity between the layers.

3.5.2.3. Output Layer:

Fig 46. Output Layer

The output layer has a voltage buffer connected to a softmax block which has been
implemented using a sub-circuit netlist using a dependent source and inbuilt SPICE
mathematical functions. The softmax function basically performs exponential
averaging.

-(30)𝑒−𝑧1/
𝑖=1

2

∏ 𝑒 −𝑧𝑖

The output from the softmax block is the probability of the tumour being benign and
the second output terminal gives the probability that the given tumour is malignant.

3.4.3. Performance Comparison:

The artificial neural network has an accuracy of 96.71% in classifying the data with
the given architecture. The SPICE implementation performs along similar lines with a
slightly lesser accuracy of 94.85% in classifying the data.
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The network was tested with sample data given in the form of input at 1 millisecond
intervals. The outputs at the softmax layer are shown in the figure below.

Fig 47. Output of Softmax Layer
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4. Convolution Neural Network Blocks

4.1. CMOS-Memristor hybrid implementation of convolutional filter:
Image kernels, are convolution based image processing breakpoints that enable
sharpening, blurring, edge detection in the input image. The application of these
results are wide, ranging from obstacle detection in drones to real-time image
enhancement in a drone on, say mars. Moreover, the proposed circuitry enables the
weights in the kernel to be floating point, without any additional processing as in the
digital architectures.

Fig 48 : Block diagram of memristor-based programmable image kernel
CNN implementation

The proposed algorithmic flow for our application is shown in Figure 42. The major
building blocks for developing this application includes:
1. Method for handling programming for synaptic weights in the circuitry.
2. Circuitry for parsing the required voltage levels over the multiple sections of
voltage inputs to be directed to the voltage multiplier and addition.
3. Handler for synaptic weight addition and integration of simpler CMOS logics
for specific application.
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Fig. 49 : Algorithmic flow for image kernel programming

Using CMOS-Memristor hybrid circuits we implemented a 3X3 kernel sized
convolutional filter, thus at one time it can process 9 pixel values. Output is taken as
voltage at the load block.

Vload =  ( ∑wi * Vini ) * Rload

Fig 50 : 3X3 CMOS-Memristor hybrid kernel convolutional filter
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The circuit comprises of 9 kernels each
with programmable weights and the
output of each kernel is connected
together through a load resistor of 1K.
Programmable weights are implemented
through a Memristor bridge circuit along
with a differential pair and active load.
Ends of differential pairs are connected
together with the active load so that
current output from each kernel adds up.

Fig 51: Load block

Voltage difference Vd is applied to the differential pair with an active load.

* Vin𝑉𝑑 = ( 𝑀2
𝑀2 + 𝑀1  −  𝑀4

𝑀4 + 𝑀3 )

-(31)
M1, M2, M3 and M4 are all memristors attached with a programmer
circuit[38]. These memristors can be programmed to give both positive and
negative weights between -1 and 1. Since, for a memristor practical values of
Roff is 81K and Ron is 1k, total weight that can be obtained is limited to 0.98
to -0.98.
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Fig 52: Memristor bridge based multiplier

To input an image, using MATLAB we converted the image to grayscale and then
mapped the 8 bit pixel values (0 to 255) into a voltage signal of 0V to 1.5V. This
voltage signal is then applied as a piecewise voltage source(in the form of .PWL file)
for each multiplier. In a similar manner, output voltage between 0 to 1.5V is mapped
to corresponding pixel values and then the output image is formed using MATLAB’s
imread function.
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Using this method 2 filters were implemented:

1. Average Blur filter
In average blur filter, we took a kernel of weights [0.1, 0.1, 0.1; 0.1, 0.1, 0.1; 0.1, 0.1,
0.1]
Thus each memristor bridge is programmed to have these weights.

Input image: Fig 53a : Image input to
CMOS-Memristor based
blur filter

Software output Image: Fig 53b : Image output from
software simulation of
image kernels

Hardware Output Image: Fig 53c : Image output
from  CMOS-Memristor
based blur filter
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2. Edge detection filter

In edge detection filter, we took kernel weights of [-0.1 -0.1 -0.1 ; -0.1 0.8 -0.1 ; -0.1 -0.1
-0.1]

Input image: Fig 54a : Image input to
CMOS-Memristor based
edge detection filter

Software output Image: Fig 54b : Image output from  software
implementation of image kernels

Hardware Output Image: Fig 54c : Image output from
CMOS-Memristor based
edge detection filter
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With these results, we were able to confirm the working of our programmable image
kernel implementation.

4.2. POOLING LAYER

Convolutional layers outputs the feature sets of an input image but the problem with
this feature set is that it is strongly linked with the position of the object within the
image. We need out feature sets to be “Local translational invariant” i.e. independent
of the position of the object in the image. One approach to do this is by downsampling
the feature set and that can be done by pooling layer.
There can be 2 types of pooling layers: Max and average pooling.
Pooling layer is applied to the output of convolutional layer after the non-linearity(ex.
ReLu). Size of the pooling layer is usually 2X2 applied with a stride of 2 units. Thus
it will always reduce the size of the feature set to half.
There is another type of pooling called global pooling, which down samples a entire
feature set to a single value.

Fig. 55: Downsampling through pooling layer.
Source: http://cs231n.github.io/convolutional-networks/

Apart from downsampling, Pooling layer also helps in improving computational
performance and prevents overfitting. Depth of the model is left invariant.

http://cs231n.github.io/convolutional-networks/
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Following are the hyperparameters in pooling:
- Stride
- Pooling window
- Type of pooling(Max vs Avg)

There are usually 4 types of poolings used:
● Max Pooling
● Average Pooling
● L2 Norm of neighbourhood
● Weighted avg. based on distance from central pixel

Pooling that pools over multiple features that are learned with several parameters can
become rotational invariant as well. Rotational invariance is required in digit
recognition etc.

4.2.1.Hardware implementation of pooling layers

Max pooling layer:
We used CMOS-JFET hybrid circuits to implement the function of max pooling layer
with 9 inputs, thus can process a 3X3 block(pooling window) at a time. First stage of
the circuit consists of a array of diodes with their outputs shorted. Usually, for
fabricating diodes using CMOS technology, there are 3 different methods: nwell on P
Substrate, p diffusion on Nwell and n diffusion on P Substrate. Diodes fabricated
using nwell on P Substrate have a significantly lower forward drop voltage and thus
they can be used to implement the array of diode in this circuit. Next stage, consists of
a voltage controlled current source. JFET gives a wider linear region for which input
voltage is directly proportional to output current through the load R3.
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Fig 56: Max Pooling hardware implementation using CMOS and JFETs

Figure 57 shows the DC transfer characteristics of the above implementation of max
pooling layer. DC characteristics were carried out by keeping all the voltages at 0.7V
and then sweeping V1 from 0 to 2V. Graph shows that when V1 is below 0.7V, output
current is constant and above that output current is linearly proportional to input
voltage.
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Fig. 57: DC characteristic of the max pooling layer circuit

Average pooling layer:
Average pooling layer can be implemented by using the 3X3 kernel sized
convolutional filter with all the weights as 1/9. Circuit of convolutional filter is
explained in the later chapters. Limitation of this circuit lies in the fact that with this
circuit only 2D Local Average pooling layer with a pooling window of 3X3 or 2X2
can be implemented. Thus, implementation of Global and 3D pooling layers still
remain an open problem.
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Normalization Layer:

It is seen that distribution of each layer’s input changes as learning parameters in the
previous layers changes(called covariance shift), this causes non-uniformity and
decreases learning rate. This problem can be solved by using a normalization layer.
Normalization layer basically forces the layer’s output to have unit standard deviation
and zero mean. Normalization layers is used a pre-processing block to improve
learning rates and reduce dependency on initialization.

Dropout layer:

Dropout in neural networks simply refers to dropping out several neurons during
training by choosing dropout neuron at ‘Random’.
In a fully connected NN, neurons develop inter-dependencies with each other which
imparts redundancy, To prevent this, dropout is used. This prevents overfitting.

Fig. 58: Effect of Dropout on neuron interconnection
{Source: https://tinyurl.com/y7j92vlu}

Problem with dropout is that it nearly doubles the number of iterations required to
converge.

https://tinyurl.com/y7j92vlu
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5. Results and Conclusion

Figure 59: Compendium of different neuromorphic architectural elements proposed
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The project revolves around constructing a memristor based model of a complete
hardware implementation of a neural network accelerator. This project proposes basic
building blocks based on preexisting memristor programming structures which have
been utilised to create basic neural network primitives. After carrying out an extensive
survey of state-of-the-art CMOS-Memristor based neural network and different
building blocks, we proposed the implementation of a complete artificial neural
network to classify tumours based on biopsy results. The circuit based neural network
achieved an accuracy of 94.85% compared to the 96.71% accuracy of the original
network. The trained weights were programmed onto the weight blocks of the
memristor bridge in this neural network. The proposed method presented also
expands the domain of the neuromorphic circuits by creating a complete hardware
implementation of the multiple convolutional neural network layers that include
image kernel based feature extraction, pooling and activation layers. Moreover, we
have proposed two hardware topologies for integrating various existing multiplication
block (memristor bridge neural network, proposed by Sah, 2012[]) for feature
extraction using OTA and active load topologies. Moreover, this implementation was
expanded to create 3x3 image kernels, for feature extraction. These features are then
reduced using the pooling layer for reducing the data set size, for making practical
computation possible. Moreover, the design of Rectified Linear Unit (ReLU) and
Tangent Hyperbolic Circuit (Tanh) was made using hardware. Thus, this project
proposes a complete hardware implementation of a CMOS-memristor based
multipurpose configurable neural network architecture.

Future Scope
The further work possible in the proposed architecture includes creating memory
buffers that can aid in storing the intermediary results of each stage of the neural
network, due to the large computational time of each stage. Moreover, circuit
reduction and optimization are important aspects of designing the neuromorphic
circuit. Optimal handling of the non-linearities of the multiple stages must also be
accounted for.
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Appendix

A.1. Matlab Script for training the Artificial Neural Network:
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A.2. Octave Script for Image Kernel Processing
A.2.1. Image to PWL signals and software result of kernel
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A.2.2. PWL signals to image conversion


